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Threshold: 0/5.00; Weight: 30%
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between the researcher and the host
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▪ Enhancing the future career prospects of the researcher after the fellowship
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▪ Quality of the proposed measures to communicate the project activities to different target 

audiences
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▪ Appropriateness of the institutional environment (infrastructure) 
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❑ Introduction

▪ the concept

▪ the procedure

❑ Case study 1: plate in clay

▪ Polynomial Chaos Expansion - PCE

▪ PCE exploitation

❑ Case study 2: pile in sand

▪ Sobol indices

❑ Concluding remarks
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the concept

FEM

NO

PD

Effective solutions from O&G industry, 
but FOWT has different requirements

transfer of 
technologies

reduced information at this design stage

(advanced numerical tools, like FEM, 
cannot be coupled with these methods)

(soil conditions, anchor 
type, floater, etc.)

inadequate competences of the designer

The objective
Develop a numerical tool that is able to embed the response of the 
advanced FE model at a low computational cost. 

MM

The methodology
Use metamodels (MM) or emulation methods. Built on 
selected samples of the problem input, they are 
trained/calibrated with the data of a FE parametric test 
programme to estimate some of the model output at negligible 
computational cost, while retaining their accuracy.

training

The need
Floating offshore wind turbines are in the pre-commercial 
development. User-friendly tools would aid the 
preliminary design (PD) of the anchors. 

(not always geotech for 
pilot design activities)

probabilistic approaches (Monte Carlo) should be used at this stage
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the procedure
foundation type geometry

FEM

constitutive modelsoil type

heterogeneity

interface

constraintsboundary conditions

load type

1. Define problem position

fixed / 
variable

Mesh  
/analysis type drained / 

undrained

homogeneous / 
layering / random soil

frictionless / penalty / 
user-defined

initial state

monotonic / cyclic 
/combine or not

❖ identification of output

▪ representative of the problem

▪ normalised

❖ selection of input 
(i.e., not deterministic parameters)

▪ realistic

▪ FE stability

▪ range of variation (MM works 
within the defined range)

▪ number (n < 20)
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the procedure Sample the selected input into their 
range of variations for a parametric test 
programme of size N

user-defined (box patterns; composite)

random (MC with normal distribution; 
LHS with uniform distribution)

sequential (Sobol, Halton; etc.)

𝑿 = 𝒙 1 , … , 𝒙 𝑁

Experimental Design (ED)

3. FE test programme

Run FEM for the created sample 𝒀 = 𝑦𝑖 = 𝐺 𝒙 𝑖 , 𝑖 = 1, … , 𝑁

Model response vector
Input-output pairs are used to calibrate the 
MM, an analytical function that approximate 
the original computational model

𝒀 = 𝐺 𝑿 ≅ 𝐺 𝑿

2. Sampling

4. MM calibration & validation

FEA

MM

metamodel
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case study 1 – plate in clay
B = 1m; B/t = 20; D=6B

2DFEM mesh lmin = t/4

linear elastic; Tresca

homogeneous

fully bonded

Constraints; no installation

undrained V-H-M

B

D

a

M

E = 500 * su

plate anchor

clay

boundary conditions
t

20B

20B

d
w

u

1. Define problem position
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case study 1 – plate in clay
B = 1m; B/t = 20; D=6B

2DFEM mesh lmin = t/4

linear elastic; Tresca

homogeneous

fully bonded

constraints

undrained V-H-M

B

D

a

M

E = 500 * su

plate anchor

clay

boundary conditions
t

20B

20B

d
w

u

1. Define problem position

step 1

M = xM * Mu

Mu = NM * B * su
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case study 1 – plate in clay
B = 1m; B/t = 20; D=6B

2DFEM mesh lmin = t/4

linear elastic; Tresca

homogeneous

fully bonded

constraints

undrained V-H-M

B

D

a

M

E = 500 * su

plate anchor

clay

boundary conditions
t

20B

20B

d
w

u

1. Define problem position

step 1

M = xM * Mu

Mu = NM * B * su

step 2

a = xa * p/2

u = d * cos(a)

w = d * sin(a)

𝑥𝑀 ∈ ℝ: 0 ≤ 𝑥𝑀 ≤ 1

𝑥𝛼 ∈ ℝ: 0 ≤ 𝑥𝛼 ≤ 1

❖ selection of input 

𝒙 𝑖 = 𝑥𝑀
𝑖
, 𝑥𝛼

𝑖
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case study 1 – plate in clay
B = 1m; B/t = 20; D=6B

2DFEM mesh lmin = t/4

linear elastic; Tresca

homogeneous

fully bonded

constraints

undrained V-H-M

B

D

a

M

E = 500 * su

plate anchor

clay

boundary conditions
t

20B

20B

d
w

u

1. Define problem position

❖ identification of output 

H

M

V

𝒚 𝑖 = 𝑁𝐻
𝑖
, 𝑁𝑉

𝑖
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case study 1 – plate in clay

user-defined sample

xM = [0.0; 0.05; 0.10; 0.25; 0.50; 0.75; 0.95] → i = 7

xa = [0; random; 1] → j = 8

N = sample size = i * j = 56 pairs

2. Sampling

𝑿 = 𝒙 𝑖 , … , 𝒙 𝑁

ED of size N

𝒙 𝑖 = 𝑥𝑀
𝑖
, 𝑥𝛼

𝑖
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case study 1 – plate in clay

user-defined sample

xM = [0.0; 0.05; 0.10; 0.25; 0.50; 0.75; 0.95] → i = 7

xa = [0; random; 1] → j = 8

N = sample size = i * j = 56 pairs

3. FE test programme2. Sampling

Model response vector

𝒀 = 𝒚 𝑖 , … , 𝒚 𝑁

𝒚 𝑖 = 𝑁𝐻
𝑖
, 𝑁𝑉

𝑖
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case study 1 – plate in clay

user-defined sample

xM = [0.0; 0.05; 0.10; 0.25; 0.50; 0.75; 0.95] → i = 7

xa = [0; random; 1] → j = 8

N = sample size = i * j = 56 pairs

3. FE test programme

4. MM calibration & validation

Polynomial Chaos Expansion (PCE); Gaussian Process (GP); 
Kriging; Neural Networks; Support Vector Machine (SVM); 
boosting regression trees; etc.

Bertrand Iooss, Paul Lemaître, 2015. A review on global sensitivity analysis methods.

2. Sampling
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Assuming that Y has a finite variance, it belongs to the 
so-called Hilbert space of second order random 
variables, which allows for the spectral representation: 

• Yk(Z) are multivariate polynomials orthonormal basis of the Hilbert space in the input vector Z

• 𝒁 = 𝑇 𝑿 T is an isoprobabilistic transform applied to the ED, X, to obtain standardised distribution forms

• 𝐾𝜖Ν is the number of terms used in the expansion (i.e., max degree of polynomial basis)

• 𝛼𝑘 are the coefficients corresponding to each polynomial

𝑌 = 𝐺 𝑿 : G (i.e., the FEM) is a black-box function

𝑌 ≅ 𝐺 𝑿 = 

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝒁

1938

Ghanem, R., and Spanos, P. D. (March 1, 1990). "Polynomial Chaos in 
Stochastic Finite Elements." ASME. J. Appl. Mech. March 1990; 57(1): 197–202.
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Assuming that Y has a finite variance, it belongs to the 
so-called Hilbert space of second order random 
variables, which allows for the spectral representation: 

• Yk(Z) 

• 𝒁 = 𝑇 𝑿

• 𝐾𝜖Ν

• 𝛼𝑘

𝑌 = 𝐺 𝑿 : G (i.e., the FEM) is a black-box function

𝑌 ≅ 𝐺 𝑿 = 

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝒁

1938

Ghanem, R., and Spanos, P. D. (March 1, 1990). "Polynomial Chaos in 
Stochastic Finite Elements." ASME. J. Appl. Mech. March 1990; 57(1): 197–202.

1. selection of orthonormal basis

2. truncation scheme (i.e., max degree)

3. computation of coefficients
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𝑃0 = 1

𝑃1 = 3𝑥

𝑃2 =
1

2
45𝑥2 − 5𝒁 = 𝑇 𝑿

For traditional distribution forms, the associated families of orthogonal 
polynomials – with enforced normalisation rule – that form a basis of an Hilbert 
space are well-known.

1. Selection of orthonormal basis

Yk(Z)
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It is natural to consider a truncated series of all the polynomials 
up to a maximum degree, p.

Standard truncation scheme 
(linear enumeration strategy)

𝑘 ≝

𝑖=1

𝑛

𝑘𝑖
total degree of 

multivariate 
polynomial 

n = number of 
input variables

Select all 
polynomials such 

that |k| is ≤ p
card 𝐾 =

𝑛 + 𝑝 !

𝑛! 𝑝!

e.g. n = 3 ;  p = 2   → card K = 10

𝐺 𝒁 = 𝛼𝑜𝑃𝑜 + 𝛼1𝑃1 𝑧1 + 𝛼2𝑃1 𝑧2 + 𝛼3𝑃1 𝑧3 +

+𝛼4𝑃2 𝑧1 + 𝛼5𝑃1 𝑧1 𝑃1 𝑧2 + 𝛼6𝑃1 𝑧1 𝑃1 𝑧3 +

+𝛼7𝑃2 𝑧2 + 𝛼8𝑃1 𝑧2 𝑃1 𝑧3 + 𝛼9𝑃2 𝑧3

2. Truncation scheme (i.e., max degree) 𝑌 ≅ 𝐺 𝑿 = 

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝒁

https://openturns.github.io/

▪ Hyperbolic enumeration strategy 
▪ Anisotropic hyperbolic enumeration strategy
▪ Infinity norm enumeration strategy

i k1 k2 k3 |k|

0 0 0 0 0

1 1 0 0 1

2 0 1 0 1

3 0 0 1 1

4 2 0 0 2

5 1 1 0 2

6 1 0 1 2

7 0 2 0 2

8 0 1 1 2

9 0 0 2 2
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3. Computation of the coefficients, ak

𝑌 = 𝐺 𝑿 = 

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝑿 + 휀

Least-square strategy
Once a truncation scheme is chosen, the series can be seen 
as the truncated one plus a residual.

Where e corresponds to all those polynomials 
whose index k is not in the truncation set K.The least-square minimisation approach consist in finding the set of 

coefficients a = {ak, k e K} which minimizes the mean square error

𝜶 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑁


𝑖=1

𝑁

𝐺 𝑿 −

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝑿

2

[1] Géraud Blatman, 2009. Adaptive sparse polynomial chaos expansions for uncertainty 
propagation and sensitivity analysis. PhD thesis at Université Blaise Pascal - Clermont-Ferrand II

[2] Le Gratiet, L., Marelli, S., Sudret, B. 2017. Metamodel-Based Sensitivity Analysis: Polynomial 
Chaos Expansions and Gaussian Processes. Handbook of Uncertainty Quantification

[3] https://openturns.github.io/ 

[4] https://www.uqlab.com/

𝒀 = 𝐺 𝑿 = 𝒚 𝑖 , … , 𝒚 𝑁

𝑿 = 𝒙 𝑖 , … , 𝒙 𝑁

available after Sampling 
and FE test programme
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case study 1 – plate in clay

ED with N = 56 + FE test programme → X and Y

4. MM calibration & validation

(random) validation sample size, M = 50

training

validating

NH NV

Q2(NH) = 0.991 Q2(NV) = 0.971

𝑄2 = 1 −
σ𝑖=1
𝑀 𝑌𝑖 − 𝐺 𝑿𝑖

2

𝑁 ∙ 𝑉𝑎𝑟 𝑌
Prediction capacity factor

𝑌 = 𝐺 𝑿 = 

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝑿
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case study 1 – plate in clay

ED with N = 56 + FE test programme → X and Y

4. MM calibration & validation

(random) validation sample size, M = 50

training

validating

𝑄2 = 1 −
σ𝑖=1
𝑀 𝑌𝑖 − 𝐺 𝑿𝑖

2

𝑁 ∙ 𝑉𝑎𝑟 𝑌
Prediction capacity factor

𝑌 = 𝐺 𝑿 = 

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝑿

Sensitivity to polynomial degree



SEAFLOWER - on the use of metamodels in offshore geotechnical engineering

case study 1 – plate in clay

training sample size, N = 56

4. MM calibration & validation

(random) validation sample size, M = 50

Compute coefficients → build the PCE metamodel

training

validating

NH NV

𝑄2 = 1 −
σ𝑖=1
𝑀 𝑌𝑖 − 𝐺 𝑿𝑖

2

𝑁 ∙ 𝑉𝑎𝑟 𝑌
Prediction capacity factor Nv
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case study 1 – plate in clay

4. MM calibration & validation

cross-validation technique

It consists in dividing the data sample into two subsample. A metamodel 
is built from one subsample (the training set) and its performance is 
assessed by comparing its prediction to the other subset (the test set).

Leave-One-Out - LOO

The PCE, 𝐺(−𝑖), is built from the ED X\{X(i)} i.e., removing the 
i-th observation

predicted 
residual ∆ 𝑖 = 𝐺 𝑋 𝑖 − 𝐺 −𝑖 𝑋 𝑖

LOO error 𝐸𝑟𝑟𝐿𝑂𝑂 =
1

𝑁


𝑖=1

𝑁

∆ 𝑖

LOO 
relative 

error
휀𝐿𝑂𝑂 =

𝐸𝑟𝑟𝐿𝑂𝑂
𝑉𝑎𝑟 𝑌

LOO 
predictivity 

factor
𝑄𝐿𝑂𝑂
2 = 1 − 휀𝐿𝑂𝑂

Q2(NH) = 0.991

Q2(NV) = 0.971

𝑄𝐿𝑂𝑂
2 (NH) = 0.992

𝑄𝐿𝑂𝑂
2 (NH) = 0.968



SEAFLOWER - on the use of metamodels in offshore geotechnical engineering

case study 1 – plate in clay

5. MM exploitation

M = 20% Mu

M = 40% Mu

M = 60% Mu

M = 80% Mu

xM = [0.0; 0.05; 0.10; 0.25; 0.50; 0.75; 0.95]

Training dataset

PCE trained with only 56 data!

xM = [0.2; 0.4; 0.6; 0.8]

xa = [random]
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PCE of plate anchor in soil domain with 
random variable properties (i.e., su) and 
subjected to combined loading (VHM)

Prof. Yinghui Tian

→ on-going activities

case study 1 – plate in clay
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case study 2 – pile in sand

1. Define problem position ❖ selection of input: 9 input 

𝑧𝑤 = 𝐿 + 10𝐷 ∙ 𝜆𝑤 𝛿𝑐𝑣 = 𝜙′𝑐𝑣 ∙ 𝜆𝛿

𝒙 𝑖 = 𝐷,
𝐿

𝐷
,
𝐷

𝑡
, 𝐷𝑟 , 𝐼𝑐 , 𝜙

′
𝑐𝑣 , 𝜆𝑤, 𝜆𝛿 , 𝜇



SEAFLOWER - on the use of metamodels in offshore geotechnical engineering

case study 2 – pile in sand

1. Define problem position ❖ selection of output 

ഥ𝑉𝑢 =
𝑉𝑢

𝛾′𝐷𝐿2

ത𝑉

ഥ𝑤 = 𝑤/𝐷 0.10

50%ഥ𝑉𝑢

ഥ𝐾50%

𝒚 𝑖 = ഥ𝑉𝑢, ഥ𝑲50%

ഥ𝑉𝑢
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case study 2 – pile in sand
Latin Hypercube Sampling (LHS) 

technique

Schematic of LHS

Sample size (ED): N = 5 

Number of variables: n = 2

Input variable range: [0, 1]

2. Sampling

Intervals of equal probability, 
in the number of sample size N

Input pairs randomly 
taken within the interval
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case study 2 – pile in sand
Latin Hypercube Sampling (LHS) 

technique

Advantages

❑ optimum coverage of the input 
variable domain; 

❑ Sample can be augmented 
without losing LH property; 
→ but Naug = 2 * N 
→ i.e., Naug = 5 * 2 = 10

2. Sampling
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case study 2 – pile in sand

n = 9
N = 50; 100; 200; 400

2. Sampling

Experimental Design (ED)

𝑿 = 𝒙 𝑖 , … , 𝒙 𝑁
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case study 2 – pile in sand

3. FE test programme

N = 200

Model response vector

𝒀 = 𝒚 𝑖 , … , 𝒚 𝑁

𝒚 𝑖 = ഥ𝑉𝑢, ഥ𝑲50%
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case study 2 – pile in sand

LHS training sample size, N = 50

4. MM calibration & validation

Q2( ഥഥ𝑉𝑢) = 0.373 Q2(ഥ𝐾50%) = 0.845

LHS validation sample size, M = 50; 100

Normalised ultimate capacity, ത𝑉 Normalised stiffness at 50%Vu, ഥ𝐾50%
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case study 2 – pile in sand

LHS training sample size, N = 100

4. MM calibration & validation

Q2( ഥഥ𝑉𝑢) = 0.909

Q2(ഥ𝐾50%) = 0.870

LHS validation sample size, M = 50; 100

Normalised ultimate capacity, ത𝑉 Normalised stiffness at 50%Vu, ഥ𝐾50%
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case study 2 – pile in sand

LHS training sample size, N = 200

4. MM calibration & validation

Q2( ഥഥ𝑉𝑢) = 0.969

Q2(ഥ𝐾50%) = 0.965

LHS validation sample size, M = 50; 100

Normalised ultimate capacity, ത𝑉 Normalised stiffness at 50%Vu, ഥ𝐾50%
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case study 2 – pile in sand

LHS training sample size, N = 400

4. MM calibration & validation

Q2( ഥഥ𝑉𝑢) = 0.974

Q2(ഥ𝐾50%) = 0.975

LHS validation sample size, M = 50; 100

Normalised ultimate capacity, ത𝑉 Normalised stiffness at 50%Vu, ഥ𝐾50%

Q2( ഥഥ𝑉𝑢) = 0.969

Q2(ഥ𝐾50%) = 0.965
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case study 2 – pile in sand

5. Input influence: Sobol indices

First-order Sobol’ indices
Quantify the portion of the total variance that 
can be apportioned to the sole input variable Xi

𝑆𝑖 =
𝑉𝑖
𝑉
=
𝑉𝑎𝑟 𝐺𝑖 𝑋𝑖
𝑉𝑎𝑟 𝑌

Second-order Sobol’ indices
Quantify the joint effect of variables (Xi, Xj)

𝑆𝑖𝑗 =
𝑉𝑖𝑗

𝑉
=
𝑉𝑎𝑟 𝐺𝑖𝑗 𝑋𝑖 , 𝑋𝑗

𝑉𝑎𝑟 𝑌

Total Sobol’ indices
Quantify the total impact of a given parameter, Xi, 
including all of its interactions with other variables

𝑆𝑖
𝑡𝑜𝑡 =

𝐴∋𝑖

𝑆𝐴

first-order Sobol, ത𝑉𝑢

total Sobol, ത𝑉𝑢

N=100 N=200 N=400

N=100 N=200 N=400
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case study 2 – pile in sand

5. Input influence: Sobol indices
first-order Sobol, ത𝑉𝑢

total Sobol, ത𝑉𝑢

N=100 N=200 N=400

N=100 N=200 N=400

▪ Most of the prediction capacity is governed by 

D; L/D and Dr

▪ With increased (training) sample size the 

influence of other parameters tends to increase

▪ There is a very small influence of D/t and Ic

▪ Rather small influence of f’cv; lw and ld, but 

their second-order indices are high
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case study 2 – pile in sand

5. Input influence: Sobol indices

total Sobol, ത𝑉𝑢
PCE N = 200

PCE is re-built with removing Ic and D/t parameters

Q2 = 0.969 Q2 = 0.958

PCE is re-built with considering only D; L/D and Dr parameters

Q2 = 0.917
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case study 2 – pile in sand

5. Input influence: Sobol indices

PCE is re-built with removing Ic only

Q2 = 0.965 Q2 = 0.763

total Sobol, ത𝑉𝑢
PCE N = 200

total Sobol, ഥ𝐾50%
PCE N = 200

PCE is re-built with removing m only

Q2 = 0.959
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▪ Sensitivity and reliability analysis with PCE

▪ Use of more sophisticated constitutive soil model for the FE model to be emulated

▪ Centrifuge tests to validate FE model prior/after metamodelling

→ on-going / planned activities

case study 2 – pile in sand
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The study made use of the following software 

https://openturns.github.io/openturns/latest/index.html

Python package for metamodelling

concluding remarks

SEAFLOWER: on the use of metamodels in offshore 
geotechnical engineering

https://openturns.github.io/openturns/latest/index.html


concluding remarks

❑ The procedure on how to create a metamodel of a FE model has been presented and applied for 

simplified case studies in the context of offshore geotechnical engineering

❑ Metamodels proved to be an effective way to store the results of FE simulations and make them 

available at a low computational cost (carrying out some large size Monte Carlo simulation on the 

meta-model will be affordable)

❑ Metamodels can be built using a small number of FE simulations and provide very accurate results over 

wide domains of input variables

❑ The procedure, here presented in its essential steps, can be further extended to accommodate 

modelling features of higher complexity, increasing the number of input variables and can be employed 

to predict other behavioural aspects, also increasing the numbers of outputs. 

SEAFLOWER: on the use of metamodels in offshore 
geotechnical engineering
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